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stability relative to this special class. Moreover the problem can be
extended, within the framework of our general method, by considering
obstacles whose contours are composed of a finite number of analytic
arcs with shock waves originating at their points of intersection.

It is evident that instability at V, or local instability, is sufficient to insure
instability in the large. Hence, the above result on instability gives the
complete answer to the problem of determining the conditions for instability
of shock lines attached to the vertex V of an obstacle whose contour is an
analytic curve. Since at most two shock angles a at V are mathematically
possible the shock line which actually occurs and which corresponds to the
shock line experimentally observed must therefore be the one whose inclina-
tion a lies in the interval ao(M) < a < A(M). This may be accepted as
sufficient evidence for the stability (local or in the large) of shock lines with
inclination a in the interval ao(M) < a < #(M) by those not interested
in an existence-theoretic treatment of the problem.

l Prepared under Navy Contract N6onr-180, Task Order V, with Indiana University.
' The derivation of these relations and other results mentioned in this note are con-

tained in several papers which we expect to publish later in the Journal of Mathematics
and Physics under the following titles: "Calculation of the Curvatures of Attached
Shock Waves"; "The Consistency Relations for Shock Waves"; and "The Distribution
of Singular Shock Directions."

aThis conclusion is reached by an observation of the graphs of the functions co and
-Go(M, a) shown in the paper "Calculation of the Curvatures of Attached Shock
Waves."
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The fundamental notion of statistical mean values in fluid mechanics
was first introduced by Reynolds. His most important contributions
were the definition of the mean values for the so-called Reynolds' stresses
and the recognition of the analogy between the transfer of momentum,
heat and matter in the turbulent motion.

In the decades following Reynolds' discoveries, the turbulence theory
was directed toward finding semi-empirical laws for the mean motion by
methods loaned from the kinetic theory of gases. Prandtl's ideas on
momentum transfer and Taylor's suggestions concerning vorticity transfer
belonged to.the most important contributions of this period. I believe
that my formulation of the problem by the application of the similarty
principle has the merit to be more general and independent of the methods
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of the kinetic theory of gases. This theory led to the discovery of the
logarithmic law of velocity distribution in shear motion for the case of
homologous turbulence.
The next important step was the definition of isotropic turbulence by

Taylor and the following period in the development of the theory of tur-
bulence was devoted to the analysis of the quantities which are accessible
to measurement in a wind tunnel stream. These quantities are the
correlation functions and the spectral function. The general mathematical
analysis of the correlations was executed by L. Howarth and myself. One
has to consider five scalar functions f(r), g(r), h(r), k(r), 1(r). These
functions determine all double and triple correlations between arbitrary
velocity components observed at two points because of the tensorial'
character of the correlations. The two scalar functions for the double
correlations are defined as follows:

ul(xl, X2, xS)ul(xl + r, X2, XS)
U1

(1)

g(r)= u1(xl, X2, x3)ul(xl, x2, + r, x3)
U1

Because of the continuity equation for incompressible fluids g = f + - d>2dr'
For the same reason the triple 'correlations h, k and I can be expressed by
one of them, e.g., by

h(r) = _ [ul(xl, X2, x3)]2u,(xl + r, x2, X3) (la)

In addition we also deduced a differential equation from the Stokes-
Navier Equation which gives the relation between the time derivative of
the function f and the triple correlation function h.

a "f2[2'/2 (11h + 4h) 2vu2 2+ (2)

We discussed this equation in two special cases:
(a) Small Reynolds number-in this case thL triple correlations can be

neglected and one obtains a self-preserving form for the double correlation
function as a function of r/X, where X is defined by the relation

du2 U
-= - lOv -. (3)

(dt cn

(b) Large Reynolds number---in this case the terms containing the vis-
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cosity can be neglected for not too small values of r and the functions f
and h are assumed to be functions of the variable r/L; L is a length
characterizing the scale of turbulence. The hypothesis of self-preserving
correlation function leads to the following special results. One can con-
sider three simple cases:

1. L = constant; then we have u2 t-2 (Taylor).
2. Loitziansky has shown that if the integral u2fJ r4f(r)dr exists, it

must be independent of time, consequently u2L5 = constant. Then
U2 ^.,

- 1/7,L -,_t2/7
3. If the self-preserving character is extended to all values of r, i.e.,

also near r = 0, one has u2 ^, t1-, L ti/2 (Dryden).
On the other hand, Taylor introduced a spectral function for the energy

passing through a fixed cross-section of a turbulent stream as the Fourier
transform 5o(n) of the correlation function f(r). The relation between
5F and f is given by the following equations:

27rnr
f(r) = J o(n) cos dn,

(4)
4u2 fD 27rnr

50o(n) = U J:f(r)cos U dr.

In these equations n is the frequency of the fluctuation of the uniform
velocity U as function of time. Relative to the stream, 5!o(n) can be re-

27rn
placed by 51(Ki), where Ki = U X i.e., the Wave number of the fluctuation,

measured in the xi direction.
It is seen that in this period of the development of the turbulence theory

the analytical-and experimental means for the study of isotropic turbulence
were clearly defined but (with the exception of the case of very small Reyn-
olds numbers) no serious attempt was made to find the laws for the shapes
of either the correlation or the spectral functions. I believe this is the
principal aim of the period in which we find ourselves at present. Promis-
ing beginnings were made by Kolmogoroff, Onsager, Weizsacker and
Heisenberg. I do not want to follow the special arguments of these
authors. I want rather to define the problem clearly and point out the
relations between assumptions and results.
A-I will assume that &e three components of the 'velocity in a homo-

geneous isotropic turbulent field, at any instant, can be developed in the
manner of Fourier's integrals

U= f f Zi(Kj, K2, K3, t)et(K1X1+K2XI+uxs)dKldK2dK3. (5)

B-The intensity of the turbulent field be characterized by the quad-
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ratic mean value u,2 level of the turbulence). Also there exists a function
T(K) such that [u02]k = fK3(K')dK', where the symbol [ug] means a partial
mean value of the square of the velocity, the averaging process being re-
stricted for such harmonic components whose wave numbers Ki, K2, Kt
satisfy the relation

K12 + K22 + K32 < K2 (6)

If such a function exists it is connected with the spectral function of Taylor
Fi(Ki) by the relation

91 (Ki) = .f, 39(K) (K2 - K12)dK. (7)

\ \ Bo I KI

K

K~~~~~~K

\ / I~~~~~~~~~~~~~~~X

.FIGURE 1

Contribution of oblique waves to plane waves in direction of xi.

This relation was found by Heisenberg. It expresses the geometrical
27r 27r

fact that all oblique waves, figure 1, whose wave-length - < -, necessarily
K KI

contribute in the one-dimensional analysis to the waves with wave length
27r/Kl.
C-It is evident that there must be an equation for the time derivative

of 5(K) which corresponds to the equation for the time derivative of f(r)
which has been found by Howarth and myself. The physical meaning of
this equation is evident. Let us start from the energy equation for a fluid
element:
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2 _+ (Uiuj + 5ijP/p) 6U, = V blu,
mj2 bt bxj~~~= bXJ2 U

The right side represents the energy dissipation by viscous forces. The
second term on the left side is the work of the Reynolds stresses; it repre-
sents a transfer of energy without actual dissipation. Our problenm is to
find bl/8t by Fourier analysis and averaging process. One finds the
contribution of the viscous forces to be equal to -2vl5(K)K2. Hence we
write formally

+ W = -2VK2(K)* (8)

Here ;KdK is the balance for the energy.contained in harmonic components
comprised in the interval dA; obviously ]o q KdK = 0. C. C. Lin has
shown thatWK= 23CK2, where

JC(K) = 2(K23C1I(K) - KJC1'(K))
and

2(U2)3/2f G sin Kr3C1(K) = h(r) dr.
7r K

Unfortunately this relation does not help, as far as the determination of
f and h is concerned. For example, if one expresses h in terms of f from
the K&rmin-Howarth equation, calculates eWK and substitutes the result in
equation (8), one obtains an. identity. It-appears that at the present
time one needs some additional physical assumption.
D-We assume that W,, can be expressed in the form:
. *~~~~~o

W = f e{f (K), 3;(K'), K, K'}dK'. (9)

The physical meaning of this assumption is-the existence of a transition
function for energy between the intervais dK and dK' which depends only
on the energy density and the wave numbers of the two intervals. It
follows from this definition that by interchanging K and K', one has

e{ff(K), W(K'), K, K' - 0{1Y(K'), 5(K), KK }. (10)

It must be noted that our assumption probably cannot be exact. It is
very probable that the values of 5 for the difference and the sum of K- and
KI also enter in the transition function. I believe that the assumption
gives a fair approximation when K and K' are very different, but it is cer-

tainly untrue if K and K' are nearly equal.
E-We furthermore specify the function e in the following way:

e = -CCc(K)of((K') K K
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It follows from dimensional reasoning that

CY + aX = /2 + := /2.

As a result of the sequence of assumptions given above we obtain the
equation:

a c [PKa'gj f(K/)3a/2aK/t/2PIdK/ _ -/2aK /2 5;(KI) K dK

2VK25i. (12)

Obviously if 5(K) is known for t = 0, equation (12) determines the values
of ff for all times. If one neglects the first term on the left side, which
represents the decay of turbulence and chooses the specific values c = 1/2,
= -3/2 one arrives to the theory proposed by Heisenberg.
Let us consider the case of large Reynolds number but assume that K

is not so large that the term containing the viscosity coefficient becomes
significant. Let us also assume that the first term on the left side is small
by comparison to the second term. Physically this means that the energy
entering in the interval dK is equal to the energy which leaves the interval.
Then one has the relation:

ifcaKfoJ c(K )/2-aK1/2-PdKt = ff3/2 aK /2Pf.j: F(K)-K dK * (13)

This equation is satisfied by the solution 5f(K) -K.- 3, as one easily can
see by substitution in 13. This result is independent, evidently, of the
special choice of a and f,. That is the reason why it was independently
found by Onsager, Kolmogoroff and Weizsacker. It is essentially a conse-
quence of dimensional considerations. Let us now stay with the case of
large Reynolds numbers by neglecting again the viscosity term but re-
tainmng the first term on the left side. In other words we consider the
actual process of decay at large Reynolds numbers. Let us assume that
if is a function of a non-dimensional variable K/KO, when Ko is a function of
time. This assumption is equivalent to our former assumption that
f(r) is a function of rIL; i.e., we assume that if and f preserve their shapes
during the decay. Evidently Ko - 1iL. Then the function if can be
written in the form

g(K) =- ()
Ko 0o

K
Then with-=- and

Ko

a du2 u2 dKo u2 dko-t .f =Q dt Ko-- dK)--
bt K dt Ko2 dt (2 dt
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equation (12) becomes

1 du2 u2 dKo\ u2 d4
VKo dt Ko2 dt J KO2 dt ¢t+W ) (4

where

W = -C[u2]h/2[4 a/- ldt
4,3/2-atl/2-1 fo '0 'I'd t].

According to Loitziansky's results' - d and one obtains the

equation

6= -5C d- - "/-cz&/!-I] (15)
dt

where

I - l(DT//2-atl/2-d/; It -

Let us assume that 4a + ,B < 5/2 as, for example, in the case of Heisen-
berg. Then for small values of t the right side of equation (15) is small
in comparison with the term on the left side and one has

.~~~~~~~~~~~~~~~4* b~~~~~~(PQ)const. 4

If 4a + f > 5/2, a begins with a lower power of K than K4 and one can show
that the integral 1o 'r4f(r)dr does not converge, so that Loitziansky's
result is incorrect. I should like to investigate this second case in a later
work. Let us assume, for the time being, that Loitziansky's result is tcor-
rect and therefore the first case prevails. Then it follows that 5f or 4)
behaves as (K/KO)4 for small values of K and is proportional to (K/KO) "" for
large values of K. For any definite choice of a and f3 the differential
equation (15) can be solved numerically. In June, 1947, I suggested to
F. E. Marble that he carry out some such calculations and his results will
be reported' in a following publication. The result that 5: _' K4 for small
values of K was also found in a different way by C. C. Lin.
For the time being I propose an interpolation formula as follows:

¢(t) = const. (1 2)17/6 (16)

This interpolation formula represents correctly cF(t) for small and large
values of t and has the advantage that all calculations can be carried out
analytically by use of known functions. The results are as follows:
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FIGURE 2

Comparison of observed and computed values of the frequency spectrum.

5;(K/Ko) = const. [ + (K/Ko) 2]'/6

¢Y,Qc,/Ko) = const. [1 + (KI/KO) 2]5/6

22/3
f(Kor) = (Kor) "K1/8 (Kor) (17)

r('/3)

.22/3 - /3FKorIg(Kor) = r('/3) (Kor) L ,(Kor) - 2 K.2/3(Kor)j

The K's are Bessel functions with imaginary argument. For small values
of xor

A , I
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f(Kor) = 1 - r( /3) t2 (18)

as suggested by Kolmogoroff's theory.
I have compared these results with the measurements of Liepmann

Laufer- and Liepnilann2 carried out at the California Institute of Tech-
nology with the financial assistance of the N.A.C.A.t These observations
were made in the 10-foot wind tunnel of the Guggenheim Aeronautical
Laboratory using a grid whose mesh size was M = 4 inches. The measure-
ments were made at a distance x = 40.4M from the grid. Figure 2 shows
the comparison of calculated and measured values for the spectral function

fq 1)
0.4

O 02 014 06 0a /0 /2 /4 /6

Y/49

7_o PM/ p z
?' rK.

FIGURE 3

Comparison of observed and computed values of the correlation function g. The
Reynolds number is based on the stream velocity and the mesh size.

51(KI). It has to be taken into account that the observed values of T1(Kj)
have large scatter; the deviation for high values of Kq corresponds to the
beginning influence of viscosity. Figure 3 gives a comparison between
measured and calculated values of the correlation function g(r). This
function is chosen because the observations are more accurate than in
any other case. It is seen that. the agreement is almost too good in view
of the assumptions made above. One must remark that there is only one
arbitrary constant in the formula for g, viz., the constant KO which deter-
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mines the scale of the turbulence. It is true that some of the data of
reference 2 do not show such a good agreement. The agreement is excel-
lent for values of g larger than 0.1, but after that the measured values
are higher than the calculated ones. Possibly some oscillations existing
in the wind tunnel stream were interpreted as turbulence or the turbulence
is not quite isotropic.

I believe that the merits of my deduction are: (a) the assumptions
involved are exactly formulated; (b) the specific assumptions of Heisen-
berg's theory concerning the transition function are 'not used; (c) the
actual process of decay is considered; (d) the analysis is extended to the
lower end of the turbulence spectrum.

Concerning the case of large values of K (small values of r) L. Kovasznay3
introduced an interesting assumption which is more restricting than my
assumption D. Obviously fKWdK iS the total energy transferred by the
Reynolds stresses from the interval (0 -> K) to the interval (K -- ) a).
Kovisznay assumes-following Kolmogoroff's arguments-that this quan-
tity is a function of 5(K) and K only. Then for dimensional reasons
fik EK = const. o ,'/2. ,This assumption appears to be correct for
large values of K. When, however, the assumption is extended to the range
of small values of K and one substitutes W in equation (8) one can calculate
easily 5(K). Neglecting the viscous term, one obtains the relation

:(K/Ko) = const. [1 + &'(K/K)1]'7/' (19)

The right side of equation (19) behaves as my corresponding equation
(17) for small and large values of K/KO. It will be interesting to see how far
the different transition from small to large values influences the accordance
with observation.

* Presented at the Heat Transfer and Fluid Mechanics Institute, Los Angeles, Cali-
fornia, June 23, 1948.

t The N.A.C.A. has kindly allowed presentatfon of these data prior to official
N.A.C.A. publication.

'Loitziansky, L. G., "Some Basic Laws of Isotropic Turbulent Flow," Central Aero-
Hydrodynamical. Institute, Report No. 440, Moscow, 1939. Translated as N.A.C.A.
Technical Memorandum 1079.

2 Liepmann, H. W., Laufer, J., and .Liepmann, K., "On Some Turbulence Measure-
ments Behind Grids," Final Report N.A.C.A. Contract NAw 5442, July, 1948.

3 Kov;isznay, Leslie, S. G., "The Spectrum of Locally Isotropic Turbulence," Phys.
Rev., 73, (9), 1115 (May, 1948).
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